A Bayes Optimal Approach for Partitioning the Values of Categorical Attributes
نویسنده
چکیده
In supervised machine learning, the partitioning of the values (also called grouping) of a categorical attribute aims at constructing a new synthetic attribute which keeps the information of the initial attribute and reduces the number of its values. In this paper, we propose a new grouping method MODL founded on a Bayesian approach. The method relies on a model space of grouping models and on a prior distribution defined on this model space. This results in an evaluation criterion of grouping, which is minimal for the most probable grouping given the data, i.e. the Bayes optimal grouping. We propose new super-linear optimization heuristics that yields near-optimal groupings. Extensive comparative experiments demonstrate that the MODL grouping method builds high quality groupings in terms of predictive quality, robustness and small number of groups.
منابع مشابه
A Grouping Method for Categorical Attributes Having Very Large Number of Values
In supervised machine learning, the partitioning of the values (also called grouping) of a categorical attribute aims at constructing a new synthetic attribute which keeps the information of the initial attribute and reduces the number of its values. In case of very large number of values, the risk of overfitting the data increases sharply and building good groupings becomes difficult. In this ...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملA New Probabilistic Approach in Rank Regression with Optimal Bayesian Partitioning
In this paper, we consider the supervised learning task which consists in predicting the normalized rank of a numerical variable. We introduce a novel probabilistic approach to estimate the posterior distribution of the target rank conditionally to the predictors. We turn this learning task into a model selection problem. For that, we define a 2D partitioning family obtained by discretizing num...
متن کاملOn Decision Boundaries of Naïve Bayes in Continuous Domains
in Continuous Domains Tapio Elomaa and Juho Rousu Department of Computer S ien e, University of Helsinki, Finland {elomaa,rousu} s.helsinki.fi Abstra t. Naïve Bayesian lassi ers assume the onditional independen e of attribute values given the lass. Despite this in pra ti e often violated assumption, these simple lassi ers have been found e ient, e e tive, and robust to noise. Dis retization of ...
متن کاملA Divisive Ordering Algorithm for Mapping Categorical Data to Numeric Data
The amount of computing time for K Nearest Neighbor Search is linear to the size of the dataset if the dataset is not indexed. This is not endurable for on-line applications with time constraints when the dataset is large. However, if there are categorical attributes in the dataset, an index cannot be built on the dataset. One possible solution to index such datasets is to convert categorical a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 6 شماره
صفحات -
تاریخ انتشار 2005